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`Statistical significance' is commonly tested
in biologic research when the investigator has
found an impressive difference in two groups of
animals or people . If the groups are relatively
small, the investigator (or a critical reviewer)
becomes worried about a statistical problem . Al-
though the observed difference in the means or
percentages is large enough to be biologically
(or clinically) significant, do the groups contain
enough members for the numerical differences
to be `statistically significant'?
For example, if Group A has a mean of 9.8

units and Group B has a mean of 17.3 units, the
difference may be biologically impressive be-
cause the second mean is almost twice as large
as the first . On the other hand, if the two groups
each contain only a few members, or if the data
are widely dispersed around the mean values .
our biologic impression may not be sustained
numerically . The statistical assessments may
show that the observed difference could quite
easily have arisen by chance alone .
The statistical procedures used to test the nu-

merical `significance' of an observed difference
between two groups have been discussed in sev-
eral previous installments4, s of this series . The
calculations used for the procedures depend on
the kind of basic data in which the results were
expressed . For dimensional data, the results
would be cited as means and the usual statistical
procedure would be a t test . For nominal or
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existential data, the results are expressed as fre-
quency counts that are converted to proportions,
percentages, or rates ; and the usual statistical
procedure would be a chi-square test . (To avoid
making unproved assumptions about the distri-
bution of a hypothetical parent population, we
can replace the t test by a Pitman permutation
test and the chi-square test by a Fisher exact
probability test .) If the data are expressed in
ranked ordinal values, the usual statistical pro-
cedure would be the Wilcoxon rank sum test or
the Mann-Whitney U test .

Although each of these tests is chosen accord-
ing to the type of data under examination, the
underlying statistical strategy is identical . It fol-
lows the same principle that was used to prove
theorems in elementary school geometry . We
assume that a particular conjecture is true . We
then determine the consequences of that conjec-
ture . If the consequences produce an obvious
absurdity or impossibility, we conclude that the
original conjecture cannot be true ; and we reject
it as false .
When this reasoning is used for the statistical

strategy that is called "hypothesis testing", the
argument proceeds as follows . We have ob-
served a difference, called S (delta), between
Groups A and B . To test its `statistical signifi-
cance', we assume, as a conjecture, that Groups
A and B are actually not different . This con-
jecture is called the null hypothesis . With this
assumption, we then determine how often a dif-
ference as large as S, or even larger, would
arise by chance from data for two groups having
the same number of members as A and B . The
result of this determination is the P value that
emerges from the statistical test procedure .
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At this point in the reasoning, the statistical
strategy departs from what was used to prove
theorems in grade school geometry . In geometry,
there were no problems in deciding whether or
not to reject the assumed conjecture, because
the geometrical logic regularly brought us to a
situation that was impossible, i .e ., the P value
was zero . In such a circumstance, the original
conjecture could not be maintained . It had to be
wrong because it could not possibly be right .
With statistical inference, however, the results
can seldom, if ever, be so conclusive . The P
value that emerges from the calculations in the
statistical test may be as small as .000001, or
even smaller, but it never becomes zero . There
is always a possibility, however infinitesimal,
that the observed difference arose by chance
alone . Accordingly, unlike the situation in ge-
ometry, we cannot use a statistical test to prove
with total certainty that the original conjecture
is wrong . There is always a chance of l in 20, or
I in 50, or whatever the P value is, that the orig-
inal conjecture (i .e ., the null hypothesis) is
right .
To draw statistical conclusions, therefore, we

must establish a concept that was not necessary
for the inferential reasoning of grade school
geometry . This concept is called an a (alpha)
level of 'significance' . It is used to demarcate
the rejection zone. If the P value that emerges
from the statistical test is equal to or smaller
than a, we decide that we shall reject the null
hypothesis . In doing so, we demarcate a as the
risk of being wrong in this conclusion-but it is
a risk we must take in order to have a statistical
mechanism for drawing conclusions . In geomet-
rical inference, a was always zero . In statistical
inference, a is customarily chosen to be .05,
i .e ., 1 in 20, although some investigators (or
editors) may select other boundaries such as . I
or .01 .
A previous papers of this series contained a

discussion of the arbitrary way in which .05 be-
came designated as the customary level of a .
The designation came, not as a pronouncement
of the Deity or from the deliberations of an in-
ternational committee, but from a habit of R. A.
Fisher. Noting that a conclusion had to be drawn
after a statistical test was performed, and know-
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ing that an a level was necessary to draw the
conclusion, Fisher chose a to be .05 . The rest of
the statistical world followed .

A. Statistical reasoning and diagnostic
analogies

This reasoning is regularly applied in a way
that makes the statistical appraisal of 'signifi-
cance' resemble a clinical diagnostic test .

1 . a level and 'diagnostic specificity' . In
using .05 or whatever other a level is selected
as boundary for the rejection zone, an investiga-
tor specifies the deliberate chance that he wants
to allow of being wrong when he decides that
the observed difference in his two groups is real .
There will exist a probability of magnitude P,
however, that the null hypothesis is correct-
that the observed difference in the groups has
arisen simply by chance, and that the conclusion
is wrong .
The a level is thus analogous to the risk of

getting a false positive result in a diagnostic
test' . Suppose we make a diagnosis of lung can-
cer after finding a positive result in the Pap
smear of a patient's sputum . If the patient does
in fact have lung cancer, the diagnostic decision
is correct-a true positive . If the patient does
not have lung cancer, the diagnosis is wrong-a
false positive conclusion . In the customary situ-
ation of hypothesis testing, we want to make a
positive decision, rejecting the null hypothesis
and concluding that the observed difference is
real . The a level indicates the statistical risk
that this decision may be wrong and that there
is actually no difference between the groups .
The value 1-ca can therefore be likened to the
specificity of a diagnostic test, which is the like-
lihood that the test will have a ,, negative result
when the disease is absent . The value of 1-a
denotes the likelihood of being correct when we
do not reject the null hypothesis and thereby
conclude that the observed difference is not
'statistically significant' .
The kind of reasoning used in forming a 'null

hypothesis' and in establishing levels of a and
1-a is based on the idea that the 'disease' we are
looking for, i .e ., a real difference between the
groups, is absent . The chance of a false positive
diagnosis is a; and the chance of a true negative
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diagnosis is 1-a . Consequently, if we set a at
.05, we take a 5% chance of being wrong if we
reject the null hypothesis (i.e ., draw a positive
conclusion) and a 95% chance of being right if
we concede the null hypothesis (i .e ., fail to
draw a positive conclusion) .

This analogy to a false positive result and to
the specificity of a diagnostic test can make the
a and 1-a concepts particularly easy for clini-
cians to understand, since the idea of a diagnos-
tic test does not appear in the general statistical
phrase by which a level is usually called Type 1
error . Probably the main reason for the statisti-
cal nomenclature is the difference in the way
investigators and statisticians use the inverted
logic that customarily goes into hypothesis test-
ing . To an investigator, the test is usually done
for a positive reason-to demonstrate that a bio-
logically impressive difference is also statisti-
cally impressive . The investigator thus regards a
doubly negative phenomenon (rejection of the
null hypothesis) as a positive event, analogous
to getting a positive result in a diagnostic test .
In general statistical usage, however, the accep-
tance or rejection of the null hypothesis is sel-
dom associated with any negative or positive
intellectual virtues . Thus, for statistical defi-
nitions, a Type I error consists of rejecting the
null hypothesis when it is actually true .
2 . The calculation of PA . To apply these

principles requires the calculation of a P value
for the observed data and the observed differ-
ence, 8 . This particular P value, which is the
conventional one usually cited in medical litera-
ture, will be designated here as P,, to distinguish
it from other P values that will be discussed later .
The procedures used for calculating PA are pre-
sented in detail in textbooks of statistics and will
be summarized as follows :

a . The simplest and most generally applica-
ble statistical strategy rests on the idea of a
"critical ratio" or "z-score" . For any single
value randomly chosen from a Gaussian distri-
bution whose constituent values are x,, x2 , x 3 ,
etc ., a critical ratio can be calculated as z = (xi

In this formula, i.c is the mean of the
parent distribution ; o- is its standard deviation ;
and x ; is the single value with which we are con
cemed. If the data under consideration consist of
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a series of means of samples, each of which has
n members randomly drawn from the same par-
ent population, these means also have a Gaus-
sian distribution . Their mean is also lt., but their
standard deviation is v/Vn-. This standard devi-
ation of a series of means is called SE, the 'stan-
dard error' of the mean . The corresponding
critical ratio for any of these means, z, is z =
(X - ~a)l(o-lVn) .
b . If we want to analyze a difference in the

means, z and y, of two samples, we seek the
distribution of a new variable, w = z - y . This
variable, which has its own mean, will have a
"common" standard deviation that can be cal-
culated in one of two ways . If we assume, by
the null hypothesis, that the population vari-
ances of z and y are equal, we can create a
"pooled variance" for w . If we do not assume
equality of population variances for z and y,
then the common variance of w equals the sum
of the variance of x and the variance of y . In
particular, if the mean values, x and y, happen
to be proportions, p, and p2, we can calculate
the common variance as follows:

1 . If we assume that the population values
for p, = P2, the common mean forboth samples
is p = (np, + np2)/2n = (p, + P2)/2 . The
common variance of the difference in propor-
tions is 2p(1 - p)/n .

2 . If we do not assume that the population
values for P, = P2, the common variance is
calculated as [p,(1 - P,) + P2(1 - P2)]/n .
The corresponding z values for these two

cases would be (p, - P2)/N/2-p( ~~-~ in the
first instance, and (P, - P2)/ [Pl(~ I - pt)

+ P2(1 - P2)]/n in the second . In general, the
formula for calculating the z value of a differ-
ence in means is

difference in means
Z

__
"standard error" of the difference

c . Regardless of whether a particular critical
ratio of z is calculated for a single mean or for a
difference in means, the z values have some dis-
tinctive, important properties . If we drew a large
series of samples, consisting of single means or
differences in means, and if the sample sizes
were themselves large, and if a z score were cal-
culated for each sampling, the array of z values
would approximate a `standard normal' distribu-
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Z=-1.96 Z=1.96

Fig . 1 . Standard Gaussian distribution shoxving
values of z for two-sided P = .0_5 .

tion, having a mean of 0 and a standard devia-
tion of 1 . Furthermore, each positive (or nega-
tive) value of z will be associated with a value
of P, which represents the amount of 'exterior'
probability as the area that lies beneath the stan-
dard Gaussian curve to the left (or right) of an
ordinate erected at z . Because the entire area
below the curve has a probability value of 1, the
value of P for the area beyond z will be .5 when
z = 0 (since half of the curve lies to the right-
or left-of the corresponding ordinate) . Some
other pertinent results, which can be found in
the tables of most statistical textbooks, are as
follows :

z value

	

0

	

1 .28

	

1.645

	

1 .96

	

2.58
P value

	

.5

	

.1

	

.05

	

.025

	

.005
d. For any selected exterior level of prob-

ability, a, there will correspond a value of za ,

denoting the point on the abscissa at which an
area of a is cut off under the probability curve .
Thus, if a is set at .005, zoos = 2.58 . The
choice of the associated z values for an a level
depends on whether the area of exterior prob-
ability is being considered in a one-sided or two-
sided direction . For a two-sided test, the exterior
probability area is divided symmetrically at the
extremes of the curve . Thus, if a = .05 for a
two-sided test, we would seek the value ofz for
a/2, which is z.o25 = 1 .96 . 'This distinction is
shown in Fig . 1 . For a one-sided test, however,
all of the exterior probability is placed on one
side of the curve, as shown in Fig . 2 . Thus, if
a = .05 but if the test is one-sided, we would
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Z = 1 .645

Fig . 2 . Standard Gaussian distribution showing
value of z for one-sided P = .05 . Line drawn at c
represents an observed value .

seek the value of z.u5, which is 1 . 645 . This shift
from a two-sided to a one-sided test therefore
reduces the value of z from 1 .96 to 1 .645 . The
line drawn at c in Fig . 2 shows the location of
an observed difference, P2 - p l , and the asso-
ciated z value . (The actual z value is determined
as z, = (P2 - p,)/SE.) Since c does not lie
within the shaded boundary, the observed P2
- p, difference would be regarded statistically
as `not significant' in a one-sided test at the
selected level of a .

e . With an appropriate statistical table show-
ing z and P values, we can thus readily move
back and forth from an observed difference in
two proportions (or means), to a value of z,
to an associated value of P. When the calcula-
tions are performed after the data have been
obtained, this P value is the P A mentioned at
the beginning of this section .
3 . The calculation ofsample size for a and

A levels . The Type-I or a-error approach that
has just been described has often been used
to determine-before the research is per-
formed-the sample size required to attain
'statistical significance' in a contrast of two
groups . For this process, the formula that was
used to get the value of z is algebraically ma-
nipulated so that we solve for n instead .
a . Information needed for calculations .

Four items of information must be assigned,
estimated, known, or assumed in order to do
the calculations .

1 . We must assign a value of delta that
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will be regarded as a biologically impressive
difference between the means (or rates) found
in the control group and in the treated (or 'ex-
perimental') group . Because this value of
delta is assigned before the research, it will
be designated here as A, to distinguish it
from the 8 value observed after the data are
obtained .

2 . We must estimate the standard error of
the difference in the means or rates of the two
groups . For rates or percentages, we will know
from previous research the particular value,
p,, that is to be expected in the control group .
The experimental group will then be required
to have a value p2 which is higher or lower
than p, by the amount, A . We can then calculate
the standard error of the assigned difference,
p2 - p,, by using the formula described in the
previous section . [For dimensional data, we
take A to be the difference in means, and we
assume that the experimental group will have
the same variance (or standard deviation) that
is expected in the control group .]

3 . We assign a level of a (thereby indicating
za) as the chosen level of 'significance .' [This
level of a actually represents Pa.]

4 . We assume that the two groups will each
be of size n, and that the total sample size will
be N = 2n .

b . Example of calculations . To illustrate
this process, suppose we will regard a new
treatment as 'useful' if it raises the percentage
of success by 10% from its customary level
of 50% in the control group . For a one-sided
result, statistically significant at the level of
a = .05, how large a sample do we need if
this difference actually occurs?
We have assigned A = . I

	

and a = .05 .
Since the test is one-sided, we find from the
table that z.os = 1 .645 . Since we know that
p, = .50, we estimate p2 = pt + A = .60 .
We quickly determine P as (p, + P2)/2 = .55 .
Assuming the null hypothesis, the common
variance of the difference in p, and P2 is
2p(1 - P)/n, which is (2)( .55)( .45)/n
= ( .495) /n . We now have all the information
we need to solve for n in the formula

z

	

v2P(I - P)/n
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Squaring both sides and isolating n, we get

z 2 [2P(1 - P)]n =

	

A2

Substituting appropriately, we find
n = (1 .645) 2 ( .495) = 133.9 = 134 .( .1) 2

Since n is the size of one sample, the total
group needed for the proposed research would
be 2n, or 268 patients . Had we decided to use
a two-sided test of probability (just in case the
treatment was 10% worse than the controls)
the value of z would have been z.o25 = 1 .96
and n would have been calculated to be (1 .96)2
(.495)/( .1)2 = 190.2 = 191 patients . The total
required sample size would- have been 382
patients .

Readers who feel more comfortable with the
chi-square test of 'significance' than with the z
procedure might like to see how this same result
can be attained using the chi-square formula . As
shown elsewhere 3, the formula for calculating chi-
square for frequency data expressed as two propor-
tions, each from a group of size n, is

XZ
- [(n2nn).J LpgI

where 4 = I - p . This formula can be solved for
n to yield n = 2p( I - p)X2/Q 2 . For a = .05 in
a two-sided chi-square test at I degree of freedom
(as befits a test of two proportions), the critical value
of X2 is 3.84 . Substituting this value of X2 into the
formula gives us exactly the same result that was
obtained with the z procedure .

The reason for using the relatively unfamiliar
z procedure, rather than our old friend chi-
square, is that the z procedure can be applied
for dimensional data as well as for proportions .
More importantly, the z procedure is especially
useful for illustrating the additional concepts
that are to appear shortly .

4 . The role of /3 and false negatives' . All
of the strategies and tactics that have just been
discussed constitute a long-standing, well es-
tablished statistical procedure that is still used
by many investigators as the 'natural' way to
calculate sample size . In 1928, however, Jerzy
Neyman and Egon S . Pearson'° pointed out
that the reasoning was incomplete . According
to the Neyman-Pearson argument, a statistical
test of 'significance', like a medical test of
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Table I . Analogies of conclusions in
diagnostic and statistical reasoning

Diagnostic reasoning

Result of di-
agnostic test I

	

Present

Disease is reallY :

Positive

	

True positive

	

False positive di-
diagnosis agnosis

Negative

	

False negative

	

True negative di-
diagnosis agnosis

Statistical reasoning

Absent

Concede, i .e .,
do not re-

	

Type 11 error ;

	

No error ; prob
ject null

	

probability : J3

	

ability : I-a
hypothesis

diagnosis, has another side to it . In diagnosis,
when thinking about the situation where the
disease is absent, we recognize that a diagnostic
test will yield either afalse positive diagnosis or
a true negative diagnosis, but what about the
situation where the disease is present? We have
thus far ignored this other side of diagnostic
reasoning . What about thefalse negative or true
positive diagnoses that will occur if the disease
actually exists? In statistical reasoning, the
counterpart to a false negative diagnosis is the
error we would make if we conceded the null
hypothesis and concluded that the observed dif-
ference was not statistically significant when, in
fact, an important difference really existed .

In Fig . 2, for example, the value of c that
was converted to a z score for the observed
difference, P2 - p,, would have been declared
, not significant' statistically . How can we be
sure of this decision? Perhaps the value of z e

is compatible with some other curve drawn
farther to the right, in which the true difference
of P2 - P, is larger and more biologically
significant than what was observed? If the true
difference is biologically important and if we
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failed to draw that conclusion, we would have
made an erroneous decision . This type of false
negative conclusion is what statisticians call a
Type H error, and a new array of reasoning
was created to work out its mathematical re-
lationships .
The first step in the proceedings is to get

a mathematical name for the likelihood of this
type of error . If a was the boundary of prob-
ability demarcated for a false positive error,
we can use the symbol 6 as the boundary for
false negative error . Furthermore, if 1-a cor-
responds to the specificity of a diagnostic test,
1-f3 will correspond to its sensitivity-the
likelihood of making a positive diagnosis when
the disease is present . Consequently, working
at selected levels of a and f3, we would have a
1-f3 chance of being right when we reject the
null hypothesis (if it is false), and a 1-ce chance
of being right when we concede it (if it is true) .
The associated analogies of the "diagnostic"
and statistical reasoning are shown in Table I .
The terms sensitivity and specificity provide

an idea of the diagnostic power of a test and
help indicate the confidence that can be placed
in the test . These same concepts are used (al-
though somewhat differently) for the statistical
nomenclature . As shown in Table I, the level
of 1-a, corresponding to the sensitivity of
the test in correctly making a positive diagno-
sis, is often called the statistical power of the
test . The level of 1-a, corresponding to the
specificity of the test in correctly making a
negative diagnosis, does not have a particular
statistical word, such as power, attached to it .
Its level is sometimes cited, however, as the
confidence with which a null hypothesis is
conceded . With this set of vocabulary and
concepts, we can characterize a statistical test
of significance by citing the a level and the
power (or t-f3 level) at which the test is em-
ployed for a difference, A . We might thus want
to talk about a particular test as having a 95%
chance (= 1-,8) of correctly rejecting the null
hypothesis at the 5% level (= a) if the true
difference is A .
The value of A is what allows us to specify

just what is happening during the tests of sta-
tistical hypothesis that are under scrutiny . In
ordinary statistical testing, the hypothesis we

Significant difference is really :

Result of Present, i .e ., Absent, i .e .,
statistical null hypothesis ( null hypothesis

test not true true

Reject null No error ; prob- Type t error : Prob-
hypothesis ability : I-,(3 ability : a
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really wanted to accept is called the alternative
hypothesis . It is expressed as HA and is written
(for a two-sided test) as HA: mean, 0 mean2 .
For a one-sided test, HA could be written as
mean, < mean2 or as mean, > mean 2 . To
accept this alternative hypothesis, we engaged
in a pattern of reasoning that called for rejection
of the null hypothesis, which is written as
Ho: mean, = mean2 .
When we add a /3-type of reasoning to this

previous form of a reasoning, we become in-
terested in testing two separate hypotheses .
One of these is the conventional null hypoth-
esis, Ho , which says mean, = mean2 . The other
is the alternative hypothesis, HA , which is
expressed in the form of mean2 - mean,
= A or (if two-sided probabilities are used)
as I mean2 - mean, I = A. The realities,
decisions, and corresponding probabilities of
error are shown in Table II . The most important
point to be noted here is that a Type II (or beta)
error can occur when we accept the null hy-
pothesis . Since this is equivalent to the error
of falsely rejecting HA, we can determine the
magnitude of probabilities for a Type II error
by considering the consequence of a rejection
of HA .
An illustration of this situation is shown in

Fig . 3 . On the left of this figure is the Gaussian
distribution of z values under the assumption
that Ho is true . To the right of the vertical line
drawn at c, we have a zone in which Ho will be
falsely rejected at an alpha level that corre-
sponds to c . The curve at the right of the figure
shows the distribution of z values under the
assumption that HA is true . To the left of the
vertical line drawn at c, we have a zone in
which the acceptance of Ho will be associated
with a false rejection of HA .

B. Strategies in R statistics

We can now contemplate two new kinds of
statistical procedures : a new kind of P value
and an additional way of determining sample
size .

1 . The calculation of /3-error . In an or-
dinary post hoc test of 'statistical significance',
the PA value that we determined (from the z
value of the observed results) told us about the
possibility of a Type I or a error . In calculating

Fig . 3 . Distributions for null hypothesis, Ho , and
for alternative hypothesis, HA . For further details,
see text .

Table 11 . Hypotheses, conclusions, and
types of statistical error
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If Ho is accepted, H,, is rejected; and vice versa .

sample size, we chose a specific level for this
error and called it a or P,, . If we assign a
A value, however, and contemplate just how
large the true difference might really be for
the two contrasted groups, we can determine
the 'other side' of statistical significance . We
can calculate a PB value for the possibility of
a Type II or )3 error .

The procedure used for this
can be illustrated in reference
of Fig . 3 .

a . The left hand curve in Fig . 3 has its mean
at 0, and represents, the distribution of values
for p2 - p, under the null hypothesis, with
Ho assumed to be true .

b . The right hand curve in Fig . 3 has its
mean at A, and represents the analogous dis-
tribution of p2 - p, under the alternative hy-
pothesis, HA .

c . The line drawn at c represents an ob-
served value of p2 - p, . [Alternatively, as

determination
to the curves

Reality Decision* Type of error Probability

~HA
Ho true ;

false}

Accept H � None 1-a

Reject Ho False
positive

a

1
Ho false;

Accept Ho False
negative

/3

H_., true
Reject Ho None I-/3
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we shall see later, it can represent an assigned
value for a or for /3 .]
d . A z-value can be determined for any

of these points by appropriate reference to
a standard error . Thus, for an observed value
of P2 - P, = S, under the null hypothesis,

and

and

The value of z, as shown in the hatched area
of Fig . 3, will indicate the probability of a
false positive rejection of Ho .

e . Under the alternative hypothesis, H A ,
the stippled area to the left of c will indicate
the likelihood of a false positive rejection for
HA . If c represents the observed value of S,
this point is located at A - S, and the associ-
ated negative value for z B is

ZB
PZ(1 - pz) + ptFI- Pt)]/n

f . For most practical purposes, we can as-
sume that the two standard errors are equal,
i .e ., that 2p(1 - p) = P2(1 - P2) + p,(1
- p,) . For example, if p, = .50 and P2 = .70,
the respective values for these terms are 0.48
and 0.46 . Consequently, if we let v = 2p
(I - P) = P2(I - P2) + .fi,(I - Pi), the for-
mulas we have been considering become

z,=S
za=0N/-n_/v

.

zg=(0-5)V'-n-/v-- z., - z1 .

g. By referring this ZB value to the associated
one-sided P , value, we obtain PB , which is the
probability of falsely rejecting the alternative
hypothesis .
2 . Illustration of calculation for P B
a. Equal sample sizes . Suppose an inves-

tigator, comparing the rates of patient satisfac-
tion with medical care at two hospitals finds
that the rate of satisfaction was 70% (16/23)
at Hospital A and 84% (19/23) at Hospital B.
The investigator concludes that the difference
is not statistically `significant' because chi-
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square = 1 .08 and P is too large (> .1) to be
`significant' . [Doing the statistical test by the
z procedure, we would choose p = (16 + 19)/
(23 + 23) = 76%. We then get z, = ( .83
- .70) (V23)/

	

(2) ( .76) ( .24) = ( .13) (4.8)/
= 1 .04 ; and the associated P value is

.15.] After drawing this conclusion, the in-
vestigator claims that the care at the two hos
pitals produces the same degree of satisfaction .

Contrary to his claim, however, we suspect
that Hospital B does give better care, that its
real level of patient satisfaction is actually
20% higher than in Hospital A, and that 'sta-
tistical significance' was absent in this study
as an act of chance, possibly because the sam-
ple sizes were too small . What we would like
to know, therefore, is the likelihood that the
investigator may have been wrong in his con-
clusion . We use the formula ZB = (A - S)

=( .20- .13)V-23/36 =(.07) (7.99)
= 0.56 . The associated one-sided value for
PB is .288 or 29%. Thus, there is a good chance
(of about 29%) that the investigator falsely
accepted the null hypothesis if the true dif-
ference in rate of satisfaction at the hospitals
is as high as 20% .
b. Unequal sample sizes . All of the fore-

going calculations were based on the assump-
tion that the observed proportions, p, and P2,
came from groups of equal sizes . If the sample
sizes, n, and n2, are unequal, then p = (nip,
+ n2P2)/N, where N = n, + n2 . Under the
null hypothesis, the standard error of p, - P2

is

	

pq (I + I),

	

where

	

q = 1 - P .

	

Thisn, n2)'
expression becomes

	

Npq/n,n, Under the
alternative hypothesis, the standard error

P1q,

	

P2g2 =
Of p, - p2 is

	

+

	

(nn, n2
n,P2g2)/(n,n2) . For most practical purposes,
we

	

can

	

assume

	

that :

	

=

	

nn lq i +
n1P2g2 . The formula for finding beta error
would then be ZB = (A - S)

	

n,n2/Npq .
3 . The 'power curve' of a statistical test .

If we want to operate a statistical test at a fixed
level of a for making decisions, we can readily
determine the values of t3 that will be associ-
ated for any choice of a . In this case, the chosen
level of a will determine an assigned value of
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za , which will be the location of z, in Fig . 3 .
Since we previously developed the formula
that zB = ZA- z,, we can substitute the as-
signed value of zq for z, and get zA = za + Zs-
Since zA has a fixed value that depends on the
magnitudes of 1, n,, n 2 , N, P, and q, the values
of z,, and z$ must sum to a constant . Conse-
quently, if higher values are assigned to za ,

the values of z$ must decrease ; and vice versa .
This reciprocal relationship is analogous to
what'we have noted in a previous discussions
of sensitivity and specificity for a diagnostic
test . If one increases, the other decreases .

This reciprocal aspect of the equation allows
various statistical tests to be illustrated with
"power" curves, which show the values of
1 - Ps that will occur with different choices
of a . For example, consider the situation where
the true values of the compared rates are p,
= 27% and P2 = 45%, so that 0 = P2 - p,
= .18 and v = 2p( I - P) = 0.46 . If we take
a sample size of 80 for each group in a com-
parison, we will have z.1 = 0N/n/v _ ( .18)

80/ .46 = 2 .37 . If we decide to reject the
null hypothesis at a two-sided a level of .05,
we would have zB = 2.37 - 1 .96 = 0.41 .
The associated PB value would be .341 and the
'power' of the test would be 65 .9% . If the
null hypothesis were to be rejected at a two-
sided a level of . 1, zB = 2 .37 - 1 .645 = 0.73,
and the associated PB value would be .233,
giving the test the higher 'power' of 76.7% .

C. The calculation of a'doubly significant'
sample size

In the foregoing discussion, we worked on
the assumption that the research was complete .
We had our data ; we had determined or as-
signed the level of PA or P,, ; and we wanted to
know what PB might be . A different application
of these concepts occurs for the modern cal-
culation of a 'doubly significant' sample size,
which means that we want a sample large
enough to be significant at the levels of both
a and /3 . In the previous calculations, we began
with known data for everything except ZB , and
we solved for z B . Now we begin by knowing
(or assuming) all the necessary information
except n, and we solve the equation for n .

1 . Simplified procedure . The simplest ap-
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proach for these calculations is to take the pre-
viously developed formula and to substitute the
assigned values of zo, and zs for their respective
counterparts z, and zs . We then would have

Tnzo = 0

	

= z« + zs . If we square both sides

and solve for n, we get n = v(za + zs)2/02.
For example, suppose we expect that P2 = .70
and p, = .50 and we want to attain statistical
significance for a 2-sided a level of .05 and a
one-sided (9 level of .05 . What size should our
sample be? We have assigned N = .20, z,,
= 1 .96 and zs = 1 .645 . From previous
calculations, we know that v is either 0.48 or
0.46 . Let us call it 0.47 . Substituting directly
into the cited equation, we get n = (0.47)
(1 .96 + 1 .645) 2 /( .20)2 , and n = 152 .7 . We
would thus need 153 patients in each group,
for a total sample size of 306 patients .

2 . Stricter procedure . In a mathematically
stricterset ofcalculations, we make provision for
the fact that the value of z,, is determined using
the null hypothesis, whereas the value of z/s
depends on the alternative hypothesis . Thus, the
point c in Fig . 3 will define an a level of

c
za

__

	

2p(

	

.

At this same point c,
Q-c

zR
__

	

[P2(]
_-

Ps) + p,(1 - POD/n
If we solve the first of these two equations for c,
and substitute the results into the second, we get

zs = (

	

2P(I - P)/n)(z(,)
[P2(I - PO + PP - Pi)I/n

This equation becomes
I

{z/3 [PI
- P2)

	

+ P,(I

	

- P. ) I

+ z,,[

	

2p)]} --

sides and solving for n, we get

n
_ (,2) { z.L2P( I - P)jt +

Squaring both

z1Y[P2(1 - P2)
+ P,( I - PAII .

This formula, which is less formidable than it
looks, is the one that regularly appears in many
statistical discussion S8, ", 'a of sample size . In
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the numerical example just cited, the actual
values are

n =
( .2'0)2
0)2{1.96[2(.60)(.40)1i + 1 .645[( .70)( .30)

+ ( .50)( .50))12

=

	

4
11 .96[ .691 + 1 .645[ .68]~ 2

.04 1 . 35 +

	

1 .12_

	

2_

	

.04 { 2.47 2 =

	

153.

The result is identical to what we obtained
with the previous set of simplified calculations .
3 . Use of statistical tables . These compu-

tations can be avoided if we make use of appro-
priate sets of prepared tables . A particularly
good collection of tables, showing sample sizes
for different values of a, /3, A, and p,, is con-
tained in Table A-3 (pages 176-194) of the ex-
cellent textbook by Fleiss' . For example, if A is
5%, if a (two-sided) is .05, and if i3 (one-sided)
is .05, Fleiss' Table A-3 shows that the size of n
will range from 796 if p, = 5%, to 2669 if p,
= 50% . If A is 20%, under the same conditions
of a and /3, the size of n will range from 99 if
p, = 5% to 172 if p, = 50%. The values of n
in Fleiss' tables are higher than those calculated
in the preceding illustrations here because Fleiss'
computations include a `correction for continu-
ity', analogous to that of the Yates' `correction'
in chi-square tests . Using a formula derived by
Kramer and Greenhouses , the n values in our
calculations can be converted to the n' values
cited by Fleiss . The formula is

n' = 411 +
%T_1+

(8/nA)J2 .

4 . Differences in sample-size methods . We
can now note the difference between calculating
a `singly' and a `doubly significant' sample size .
In the classical old formula for a `singly signifi-
cant' sample

za2v
A2

For the `doubly significant' sample,

The change to `double significance' thus in-
creases the sample size by a ratio of [(za + zp)/

zJ2 , which is h + ?L . 12 . If we choose equal
za

values for our levels of a and 6, the right hand
ratio of z values will be 1, and the 'doubly sig-
nificant' sample will be ( l + 1)2 = 4 times as
large as the first .
To illustrate this point, suppose we want to

achieve a one-sided significance level of .05 in a
clinical trial where the expected rates of success
are 10% in the control group and 20% in the
treated group . From these data, p2 = .20, p,
= .10, A = . 10, and v is estimated as ( .20)
(.80) + ( .10)( .90) = 0 .25 . [The alternative es-
timation for v would be (2)( .15)(.85) = 0.26 .]

For the 'one-sided' calculations of sample
size for a level significance, we would have

and we would need 2 x 68 = 136 patients al-
together .
To calculate sample size for both a and j3

levels of significance, we would have

n =
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n = z2v

	

= (1 .645) 2 ( .25) = 67.65A2 ( .10)2

(z n + z[3 ) 2V _

	

(1.645 + 1 .645)2(.25)
Q2

	

( .10)2
= 270.6 .

would therefore need 2 x 271 = 542 pa-We
tients, an amount that is about four times larger
than before .
Two other important features to be noted

about these formulas are the crucial roles of A
and v . Since A is always a value between 0 and
1, the value of AZ is always smaller than A . (For
example, if A = .3, A2 = .09 .) Furthermore,
the smaller the value of A, the smaller will be
the value of A' and the larger will be the cor-
responding value of ( I/AZ) which is used as a
factor in determining n . Thus, the smaller the
difference for which we want to show `statistical
significance', the larger is the sample size that is
required . In fact, if we want to prove the null
hypothesis exactly, and to show that p, and p2

are absolutely identical, we would need a sample
of infinite size because A = 0 .

Since v appears in the numerator ofthe factors
that are multiplied to calculate n, the size of n
will decrease as v decreases . The value of v,
being dependent on 2p(1 - p), will be at a
maximum when p = 50% and will take mini-
mum values near the polar extremes of 0% or
100% . Thus, if p is close to 0% or to 100%, v
will be small and n will be correspondingly
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small . On the other hand, when p is very close
to a polar extreme, a large value for A may be
extremely difficult or unfeasible to obtain . The
advantage of a very high or very low value for p
may thus be completely obliterated by the asso-
ciated disadvantages of a very small value for A .

D. The importance of /3 error

Because scientific research is usually directed
at showing that two entities are different, most
investigators depend on statistical tests that pro-
vide values only for PA . The values of PB are
generally omitted, either because the investiga-
tor is unaware of their existence or because he
is not concerned about them . The absence of
attention to the possibility of (3 error is equiva-
lent to setting the value of zg = 0. For this
value of zf3, the one-sided PB = .5 ; and the
`power' of the test is 1 - PB or 50%. In other
words, the investigator takes a 50-50 chance of
committing the false negative error of incorrect-
ly rejecting the alternative hypothesis .
Most investigators accept this risk with equa-

nimity, since their main concern in the custo-
mary situation of 'significance' testing is with
a error-with a false positive conclusion . There
are at least two major scientific circumstances,
however, in which the role of a error becomes
particularly important .
The first of these circumstances is a clinical

trial in which we want to be sure of having a
satisfactory chance of detecting a substantial A
when it exists . If we fail to find 'statistical sig-
nificance' at the a level, we might like to be
reasonably confident about accepting the null
hypothesis . This strategy is responsible for
sample-size calculations that culminate in such
phrases as "a 90% chance of finding a 20% dif-
ference at the .05 level" . In this phrase, the
associated statistical values are A = .20, a
_ .05 and (one-sided) 6 = . I .
The second (and perhaps more important)

role of /3 error is in the situation where we want
to show that two groups are similar rather than
different . An example of such a situation is a
clinical trial' 2 " '' whose conclusion was that the
quality of primary care provided by nurse prac-
titioners is essentially equal to what is offered
by physicians . Another example, which is an in-
creasingly common situation in clinical pharma-
cology, occurs for tests of the bioequivalence of

E. Caveats and abuses
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two pharmaceutical preparations . In such cir-
cumstances, we assign a value of A as the maxi-
mum permissible difference between the groups .
If the observed difference is smaller than A, we
shall conclude that the groups are essentially
equivalent . As noted earlier, the value that is
chosen for A and the magnitude of p, will be as
important as the choices of a and /3 in deter-
mining sample size .
The high values of n that can emerge from

these calculations will be a major problem in
routine studies of bioavailability . In an example
cited earlier, for a and /3 both equal to .05 and
for A = 29%, the size of n could range from
84 to 143, according to the values of p, . Since
sample sizes of this magnitude will usually be
unfeasible, the values of a and (3 may have to
be made quite liberal . Thus, if a (two-sided) is
increased to 0.2 and ifa (one-sided) is increased
to 0.15, the size of n will vary as follows :

0 5% 5% 20% 20%
p, 5% 50% 5% 50%
n 254 728 38 57

These sample sizes, although smaller than be-
fore, are still substantially larger than the 6 to 10
patients whose data have been customarily ex-
amined for studies of bioavailability . If the bio-
availability research is conducted in a "cross-
over" manner, in one group of patients rather
than two groups, the paired arrangement of data
will permit a further reduction in sample size .
Nevertheless, if strict statistical standards be-
come demanded for studies of bioequivalence,
the problems of obtaining ample numbers of
people for the tests may be so formidable that
the studies will be impossible to conduct . Just
as the old calculations of PA for a error alone
made no provision for /3 error, the new calcula-
tions of sample size of f3 error alone may have
to be done without consideration of a error .

A knowledge of a reasoning and the 'other
side' of 'significance' can lead to prompt detec-
tion of a classical abuse in the way that statisti-
cal tests are often reported in medical literature .
The /3 reasoning has also been applied to create
new problems in the calculation of sample size .

1 . Conclusions when the null hypothesis is
conceded . In a routine statistical test of 'sig-
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nificance', what conclusion do we draw if the
PA value is higher than a? The correct answer to
this question is that such a high P value makes
us concede, i .e ., fail to reject, the null hypothe-
sis . With this concession, we conclude that the
observed difference is statistically not signifi-
cant . The wrong answer to the question is that
we accept the null hypothesis and conclude that
the difference is insignificant .
The distinctions between concede and accept

and between not significant and insignificant can
be clinically illustrated by recalling the purpose
of the sputum Pap smear as a diagnostic test . We
order the test in search of a positive diagnosis of
lung cancer. If the test is negative, however,
we cannot conclude that lung cancer has been
ruled out . We would merely concede that we
have failed to show its presence . To accept the
negative diagnosis that lung cancer is absent,
i .e ., to rule it out, we would want to check re-
sults from additional tests, such as the chest
X-ray .

Consequently, in a simple test of 'statistical
significance', a high P value is like the Scottish
verdict of not proved . When PA exceeds a, we
neither reject nor accept the null hypothesis . We
concede it, or fail to reject it . Our conclusion
must therefore be that the observed difference
is not significant, rather than insignificant . To
conclude that it is insignificant, we would have
to accept the null hypothesis-a decision that
would require additional evidence for the pos-
sibility of /3 error .
The previous example of satisfaction with

care at two hospitals provided an illustration of
the erroneous conclusions that can occur when
PA > a. The investigator wanted to claim that
the satisfaction was similar at the two hospitals,
but we would not accept his claim because it had
a 'power' of only 71%. In fact, if our original
sample size was quadrupled, and if the propor-
tion of successes remained the same, the result-
ing numbers would be 64/92 vs . 76/92 and the
difference would be statistically significant at
P < .05 even though the observed S was only
13% .
Even when the two contrasted results seem

quite similar, we still cannot conclude that their
difference is insignificant . For example, suppose
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we have found a success rate of 3/7 (43%) for
treatment A and 4/9 (44%) for treatment B. This
result seems unimpressive, but it could readily
arise by chance if the true success values for
treatments A and B were, respectively, 29% and
56% . Thus, if we exchanged one success and
one failure in the patients comprising groups A
and B, we would get success rates of 2/7 (29%)
for A and 5/9 (56%) for B . This difference is
impressive although not statistically significant .
One of the main abuses of tests of statistical

significance occurs, therefore, when an investi-
gator who gets a high P value, i .e ., PA > a,
concludes that the observed difference between
two groups is 'insignificant' and that the groups
should be regarded as similar . If this type of
reasoning were correct, we could always 'prove'
that two treatments were identical, merely by
using a small sample size for the study . Thus,
if we put 3 patients in each group, a result as
extreme as 0/3 (0%) successes for treatment A
vs . 3/3 (100%) for treatment B could still not
achieve 'statistical significance' . (The two-sided
P value is .1 .) From this failure to attain 'statis-
tical significance', it would be absurd to con-
clude that the observed difference is insignifi-
cant and that the two treatments are equivalent .
Nevertheless, such errors regularly appear in
medical literature .
An analogous problem occurs when statistical

tests are done to determine whether the act of
randomization provided an equitable distribu-
tion of the patient groups before treatment began
in a clinical trial . When good grounds exist for
suspecting baseline inequalities, a high PA value
cannot alone be accepted as confirmation of
their absence . The analysis is incomplete un-
less attention is also given to PB . (A memo-
rable example of such omissions occurred in
analyses'- " of the celebrated UGDP study of
diabetes . When statistically significant differ-
ences were not found in certain analyses of
baseline distinctions, the data analysts con-
cluded that the baseline differences were insig
nificant, although no levels of )3-error were
cited .)
The point to be borne in mind is that an ordi-

nary test of 'statistical significance' can be used
only to reject the null hypothesis, not to accept
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it . The test either shows or does not show a 'sig-
nificant' difference . It cannot show an 'insig-
nificant' difference . To draw the latter conclu-
sion, we would need to know the other kind of P
value for the possibility of /3 error.

2 . Problems in calculating sample size .
With the increasing performance of controlled
clinical trials, many alternative strategies have
been proposed for determining sample size . So
many different proposals have been made, in
fact, that contriving new ways to gauge sample
size seems to have become a favorite indoor
sport of statistical theoreticians . The alternative
strategies include schemata based on sequential
analysis, Bayesian conjectures, and various
'play-the-winner' techniques . Schneiderman 14
has provided a well-written summary of the
state of the art in some of the statistical ideolo-
gies . For practical purposes, the material pre-
sented here has been based on the currently
accepted "conventional wisdom" ."

Like many other statistical activities, a pre-
occupation with the mathematical tactics of
determining sample size may often distract both
statisticians and investigators from basic chal-
lenges that are the really fundamental issues in
scientific research . In order to calculate a sam-
ple size, we often ignore these issues and as-
sume that they have been taken care of . After
the Neyman-Pearsonian, Bayesian, or other
strategies have yielded a number in the sample
size calculations, the clinical investigator may
become awed by the precision of the number
('you will need exactly 984 patients') or flus-
tered by its magnitude ('how the devil can I
possibly get so many?') . As this number and
negotiations about its reduction become the
focus of attention, the clinician and statistician
may forget that the basic scientific problems
remain unresolved . Among them are the fol-
lowing :
a . The univariate choice ofan endpoint . To

determine p,, p2, and A, we must choose a

- I~or my education in these cintcepts and Ibr other helpful ant-
menu on this test . I am indebted to sereral clinical and statistical
colleagues : Donald Archibald . Robert Deupree . Michael Gent .
Walter Spitzer, and Carol yn Wells . Their aid is gratefully ac-
knowledged here . while they are also ahsolsed of responsibility for
the contents .
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single variable whose outcome will be the "end-
point" in the research . This concentration on
only one kind of outcome is contrary to every
tenet of good clinical investigation, which calls
for an appraisal of the multitude ofvariables that
are involved in a patient's responses to treat-
ment. Nevertheless, there currently exist no
satisfactory biostatistical procedures for either
choosing sample size in a multivariate manner
or preparing a clinically effective composite of
important multiple variables into a single uni-
variate index .
b . The focus on 'hard data' . Since every-

thing in the sample size calculations depends on
the endpoint noted in a single variable, statisti-
cians usually want to be sure that this endpoint
is an item of 'hard data', such as death . Since
changes in death rates are usually smaller than
the changes that can occur in important 'soft
data' variables, the result of the focus on hard
data is to create a relatively small value of A,
which may lead to excessively large values for
the calculated sample size . A more important
consequence of the hard-data focus is that an
important soft-data variable, such as vascular
complications or quality of life, may become
ignored in the early stages of biostatistical plan-
ning for the trial and may remain ignored (or
poorly managed) thereafter . Because of this in-
attention to 'soft data', the most important clini-
cal and human aspects of therapy-the associ-
ated risks, benefits, costs, joys, and sorrows of
treatment-often become grossly neglected in
the research's .
c . The current uninformed choice ofp, . Be-

cause good data are seldom available for 'histor-
ical controls', the choice of p, (as an estimate
of the outcome rate for the control group) be-
comes an act of guesswork that often turns out
to be erroneous . If the error leads to a huge
overestimate of sample size, the trial becomes
excessively expensive .
d . The future uninformed choice of p, . The

estimate of a single value of p, has no real
clinical precision . What is usually needed, in-
stead, is a series of p, values-one for each of
the cogent clinical strata 2 of patients subjected
to therapy . If the data of large-scale randomized
therapeutic trials are not analyzed with a cogent
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clinical stratification, however, the results of a
current trial cannot provide a good estimate of
pt values for use in future trials . Today's expen-
sive, unproductive therapeutic trial may thus be
followed by tomorrow's .

e . The arbitrary choices of'a and (3 . Despite
the elaborate reasoning that has been discussed
for choosing a and (3, their values are seldom
selected in the abstract intellectual manner de-
scribed here . What often happens is that the
statistician and investigator decide on the size of
A . The magnitude of the sample is then chosen
to fit the two requirements (1) that the selected
number of patients can actually be obtained for
the trial and (2) that their recruitment and inves-
tigation can be funded . The values of a and )3
are then adjusted to fit this number and a suit-
able mathematical rationale is then developed
for presentation to the granting agency .
f The arbitrary choice of A. As the differ-

ence that indicates 'clinical significance', the
magnitude of A is often the most crucial issue
in planning and evaluating the research . Despite
this importance, the scope of A is not only con-
strained by the univariate restrictions noted
earlier, but it also gets chosen arbitrarily . Judg-
ments about the proper size of A have received
almost no concentrated attention via symposia,
workshops, or other conclaves of experts as-
sembled to adjudicate matters of clinical impor-
tance. In the absence of established standards,
the clinical investigator, on being badgered by
the statistician to choose a A so that sample
size can be calculated, picks what seems like a
reasonable value. This value is tossed into the
formula, using za , zp, etc. If the sample size
that emerges is unfeasible, A gets adjusted
accordingly, and so do a and /3, until n comes
out right.

In some brave new world of the future, when
clinicians begin to insist that large-scale thera-
peutic trials be truly clinical investigations as
well as elaborate exercises in mathematics, bet-
ter solutions may be developed for these clinical
and scientific problems . In the meantime, clini-
cal investigators can take comfort in knowing
about the panacea-like marvels offered by mod-
ern statistical methods for determining a-error,
)S-error, and sample size . Even if we don't

know what we're doing and even if we can't
specify it, repeat it, or make good clinical sense
out of it, we can still calculate the required
populational numbers and determine the prob-
abilistic uncertainties going in both logical
directions . Not since the days of alchemy have
scientists been able to rely on such dazzling
transmutations .
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